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Abstract

We show that probability measures on the unit circle associated with Verblunsky coefficients obeying a
Coulomb-type decay estimate have no singular continuous component.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let d� be a probability measure on R/(2�Z) that is not supported on a finite number of points.
Then, using the Gram–Schmidt procedure, we may find polynomials �n(z) that obey∫ 2�

0
�m(ei�)�n(e

i�) d�(�) = �m,n.

We also consider the monic orthogonal polynomials �n(z). They obey the Szegő recursion

�n+1(z) = z�n(z) − �n�
∗
n(z),

where �∗
n(z) = zn�n(1/z). The �n are called Verblunsky coefficients and they belong to the unit

disk D = {z ∈ C : |z| < 1}. Conversely, every � ∈ ×∞
n=0D corresponds to a unique measure.

See [16–18] for background material on orthogonal polynomials on the unit circle (OPUC).
In this paper we are interested in the measures associated with Verblunsky coefficients that

have Coulomb-type decay. To motivate our study, let us recall the following result of Golinskii
and Ibragimov [4]:

∞∑
n=0

(n + 1)|�n|2 < ∞ ⇒ d�sing = 0.
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Here, d�sing = d�sc + d�pp, where d� = d�ac + d�sc + d�pp is the Lebesgue decomposition of
d� into an absolutely continuous (with respect to Lebesgue measure) piece, a singular continuous
piece, and a pure point piece.

The natural class of Verblunsky coefficients having true Coulomb decay, that is, |�n| = O(1/n),
is outside the scope of the result above. More generally, one may be interested in the class of
Verblunsky coefficients satisfying

N∑
n=0

(n + 1)|�n|2 �A log N (1)

for some A < ∞. The following extension, due to Simon [15], of the result of Golinskii and
Ibragimov covers a portion of this class:

� satisfies (1) for some A < 1
4 ⇒ d�sing = 0. (2)

Simon also shows that for every A > 1
4 , there is an example satisfying (1) with d�pp �= 0. Thus,

the result (2) is almost sharp. The latter result is an OPUC analogue of the classical Wigner–von
Neumann example that exhibits an embedded eigenvalue for a half-line Schrödinger operator with
O(1/x) potential [19].

The pure point component is further studied in [17]. There it is shown (see Theorem 10.12.7)
that if (1) holds for some A, then d� has at most K pure points, where K is the unique integer with
K �4A < K + 1. Following this theorem, Simon writes that it is an intriguing open question if
(1) implies d�sc = 0. There are two reasons why one expects a positive answer to this question.
Intuitively, it should be easier to have infinitely many pure points than a singular continuous
component, so that the result just quoted supports the conjecture that a singular continuous piece
should be impossible. On the other hand, Kiselev has proven the absence of singular continuous
spectrum for half-line Schrödinger operators with O(1/x) potentials [5].

Our goal here is to give an affirmative answer to Simon’s question and prove the following
theorem:

Theorem 1. Suppose there is A < ∞ such that � satisfies (1). Then, d�sc = 0.

Since it is also shown in [16] (see Corollary 2.7.6) that (1) with A = 1/4 implies d�pp = 0, it
follows from Theorem 1 that (2) may be strengthened to

� satisfies (1) for some A� 1
4 ⇒ d�sing = 0,

which is optimal by the discussion above.
The overall strategy in our proof of Theorem 1 will be inspired by Kiselev [5]. This will require

some preparatory work. We first recall Prüfer variables and the Bernstein–Szegő Approximation
to d� in Section 2 and prove a comparison lemma which is related to the Chebyshev–Markov
Moment Problem. Then, we consider the support of d�sing in Section 3 and prove that it has
Hausdorff dimension zero. This is a result in the spirit of Remling [12] who proved results of this
flavor for half-line Schrödinger operators. Finally, we prove Theorem 1 in Section 4 by working
out the OPUC analogue of Kiselev’s ideas from [5].
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2. Prüfer variables and Bernstein–Szegő approximation

Let {�n} be the Verblunsky coefficients of a non-trivial probability measure d� on �D. As
mentioned above, the �’s give rise to a sequence {�n(z)} of monic polynomials (via the Szegő
recursion) that are orthogonal with respect to d�. For � ∈ [0, 2�), we also consider the monic
polynomials {�n(z, �)} that are associated in the same way with the Verblunsky coefficients
{ei��n}.

Let � ∈ [0, 2�). Define the Prüfer variables by

�n(e
i�, �) = Rn(�, �) exp

[
i(n� + �n(�, �))

]
,

where Rn > 0, �n ∈ [0, 2�), and |�n+1 − �n| < �; compare [9,10,17]. These variables obey the
following pair of equations:

R2
n+1(�, �)

R2
n(�, �)

= 1 + |�n|2 − 2Re
(
�ne

i[(n+1)�+�+2�n(�,�)]) ,
e−i(�n+1(�,�)−�n(�,�)) = 1 − �ne

i[(n+1)�+�+2�n(�,�)][
1 + |�n|2 − 2Re

(
�nei[(n+1)�+�+2�n(�,�)])]1/2

.

We also define rn(�, �) = |�n(�, �)|.
When {�n} ∈ �2,

rn(�, �) ∼ Rn(�, �) ∼ exp

⎛
⎝−

n−1∑
j=0

Re(�j e
i[(j+1)�+�+2�j (�,�)])

⎞
⎠ . (3)

(We write fn ∼ gn if there is C > 1 such that C−1gn �fn �Cgn for all n.) For the Prüfer
equations and (3), see [17, Theorems 10.12.1 and 10.12.3].

Next we recall the Bernstein–Szegő Approximation of d�. The measure d�n associated with
Verblunksy coefficients �0, . . . , �n−2, �n−1, 0, 0, . . . is given by

d�n(�) = d�

2�r2
n(�, 0)

, (4)

compare [16, Theorem 1.7.8].
If d� and d	 are two measures whose first n Verblunsky coefficients coincide (i.e., �k(d�) =

�k(d	), 0�k�n−1), their moments up to order n are the same (see, e.g. [16, Theorem 1.5.5.(ii)]).
Consequently, given a Laurent polynomial, f (�) =∑n

k=−n fke
ik�, we have∫ 2�

0
f (ei�) d�(�) =

∫ 2�

0
f (ei�) d	(�). (5)

Lemma 2.1. Suppose d� and d	 are two measures whose first n Verblunsky coefficients coincide.
For every 
 > 0 and every interval I ⊆ �D of length ��n−1/(2+
), we have

�(I )�	(3I ) + C�
. (6)

Remarks. (a) In (6), 3I denotes the interval of length 3� that has the same center as I and C is a
constant that depends only on 
. Alternatively, one may choose a universal C for which (6) holds
for all ���0 (and hence n�n0(
)).
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(b) Since the estimate (6) is sufficient for our purpose and has a short and elementary proof, we
content ourselves with this explicit statement. We do want to point out, however, that it is closely
related to the Chebyshev–Markov Moment Problem: if we fix n initial moments and an interval
I, what are the extremal values of �(I ) when � ranges over all measures that have the prescribed
moments? A wealth of material dealing with this problem may be found, for example, in [7,8].
An analogue of these classical results for Schrödinger operators in L2(0, ∞) was recently found
in [13].

Proof. Without loss of generality, we assume that I = (−�
2 , �

2 ). Consider the Fejér kernel,

Fn(�) =
n∑

k=−n

(
1 − |k|

n + 1

)
eik� = 1

n + 1

(
sin n+1

2 �

sin 1
2�

)2

,

and let

�n(�) = (Fn ∗ �2I )(�) = 1

2�

∫ 2�

0
Fn()�2I (� − ) d,

where �2I is the characteristic function of the interval (−�, �).
Clearly,

|�n(�)|�1 for all �. (7)

Moreover, by (5), it follows that∫ 2�

0
�n(�) d�(�) =

∫ 2�

0
�n(�) d	(�). (8)

Note that

�n(�) − �2I (�) = 1

�

∫ �

0
Fn()

[
�2I (� − ) + �2I (� + )

2
− �2I (�)

]
d.

When ||�| − �|� �
2 , this gives

�n(�) − �2I (�) = 1

�

∫ �

�/2
Fn()

[
�2I (� − ) + �2I (� + )

2
− �2I (�)

]
d.

Consequently, for these values of �, we have

∣∣�n(�) − �2I (�)
∣∣ � 2

�

∫ �

�/2
Fn() d� 2

n + 1

1

sin2 �
2

� 1

�2n
��
,

where we used the assumption ��n−1/(2+
) in the last step. 1 Thus,

|�n(�) − �2I (�)|��
 for all � satisfying ||�| − �|� �

2
. (9)

The assertion of the lemma is an immediate consequence of (7)–(9). �

1 We write f �g if f �Cg for a suitable constant C.
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3. Zero-dimensionality of the singular part

In this section we show that the singular part of d� must be supported on a set of zero Hausdorff
dimension if the Verblunsky coefficients obey (1). Results of this kind were obtained in the context
of Schrödinger operators by Remling [12], Christ and Kiselev [2], and Damanik and Killip [3],
for example. We will follow ideas from [3] rather closely.

Theorem 2. If the Verblunsky coefficients {�n} satisfy (1), then the set

S = {� ∈ [0, 2�) : Rn(�, �) is unbounded for some �}
has zero Hausdorff dimension.

The following consequence of Theorem 2 is central to our proof of Theorem 1:

Corollary 3.1. If the Verblunsky coefficients {�n} satisfy (1), then d�sing is supported on a set of
zero Hausdorff dimension.

Proof. It was shown in [17, Corollary 10.8.4] that d�sing is supported on the set S. �

Assuming (1), we see that

∞∑
n=1

|�n|2 �
∞∑

k=0

2−k
2k+1−1∑
n=2k

(n + 1)|�n|2 �A log 2
∞∑

k=0

(k + 1)2−k.

Thus, (1) implies {�n} ∈ �2 and, because of (3), our goal is hence to show that

A(n, �, �) =
n−1∑
j=0

�j e
i[(j+1)�+�+2�j (�,�)]

is a bounded function of n for all �, provided that � is away from a set of zero Hausdorff dimension.

Lemma 3.2. If

�̂(�, n) = lim
N→∞

N∑
j=n

�j e
ij�

exists and obeys

∞∑
j=1

|�̂(�, j)�j−1| < ∞, (10)

then � /∈ S.

Proof. We will show that A(n, �, �) is bounded (in n) for every � ∈ [0, 2�) when (10) holds.
The assertion then follows from (3).
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Write �j (�, �) = (j + 1)� + � + 2�j (�, �). We have

A(n, �, �) =
n−1∑
j=0

[
�̂(�, j) − �̂(�, j + 1)

]
ei�j (�,�)−ij�

=
n−1∑
j=1

�̂(�, j)
[
ei�j (�,�) − ei(�j−1(�,�)+�)

]
e−ij� + O(1).

Since

|ei�j (�,�) − ei(�j−1(�,�)+�)|� |�j (�, �) − �j−1(�, �) − �|
= 2|�j (�, �) − �j−1(�, �)|
� |�j−1|,

boundedness of A(n, �, �) follows. �

Lemma 3.3. Let d	 be a positive measure on [0, 2�). For each ε ∈ (0, 1) and every measurable
function m from [0, 2�) to the set of non-negative integers,

⎧⎨
⎩
∫ ∣∣∣∣∣∣

m(�)∑
n=0

�ne
−in�

∣∣∣∣∣∣ d	(�)

⎫⎬
⎭

2

�Eε(	)
∞∑

n=0

(n + 1)1−ε
∣∣�n

∣∣2,
where Eε denotes the ε-energy of d	: Eε(	) = ∫ ∫ (1 + |x − y|−ε) d	(x) d	(y).

Proof. This follows by slightly adjusting the calculation from [20, §XIII.11, p. 196], see also
[1, §V.5]. (To deal with the absolute value, one can introduce a phase factor which comes along
for the ride as one follows through the steps of the calculation from [20].) �

Proof of Theorem 2. We will apply the criterion of Lemma 3.2. Let us first note that by
[20, Theorem XIII.11.3] and [1, §IV.1], the series defining �̂ converges off a set of zero Hausdorff
dimension. Therefore, we may exclude from consideration those values of � for which �̂ is not
defined.

By applying the Cauchy–Schwarz inequality to dyadic blocks, for example, we see that (1)
implies n−ε/4�n ∈ �1 for all ε > 0. Hence the proposition will follow from Lemma 3.2 once we
prove that for all ε > 0, the set of � for which nε/4�̂(�, n) is unbounded is of Hausdorff dimension
no more than ε.

Let m(�) be a measurable integer-valued function on [0, 2�). Because of (1), Lemma 3.3 implies

∫ ∣∣∣∣∣∣
2l+1−1∑
n=ml(�)

�ne
in�

∣∣∣∣∣∣ d	(�) =
∫ ∣∣∣∣∣∣

m̃l (�)∑
n=0

�2l+1−1−ne
−in�

∣∣∣∣∣∣ d	(�)

�

⎧⎨
⎩

2l+1−1∑
n=2l

(n + 1)1−ε
∣∣�n

∣∣2
⎫⎬
⎭

1/2√
Eε(	)

�
√

l 2−εl/2
√

Eε(	),
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where ml(�) = max{m(�), 2l}, m̃l(�) = min{2l − 1, 2l+1 − 1 − m(�)}, and sums with lower
index greater than their upper index are to be treated as zero. Multiplying both sides by 2εl/4,
summing this over l, and applying the triangle inequality on the left gives

∫ ∣∣∣∣∣∣m(�)ε/4
∞∑

n=m(�)

�ne
in�

∣∣∣∣∣∣ d	(�)�
√

Eε(	).

That is, for any measurable integer-valued function m(�),∫
m(�)ε/4

∣∣�̂(�, m(�))
∣∣ d	�
√

Eε(	).

This implies that the set on which nε/4�̂(�, n) is unbounded must be of zero ε-capacity (i.e., it
does not support a measure of finite ε-energy).

As the Hausdorff dimension of sets of zero ε-capacity is less than or equal to ε (see [1, §IV.1]),
this completes the proof of the fact that S has zero Hausdorff dimension. �

4. Absence of a singular continuous component

In this section we employ ideas of Kiselev [5] to show that there is no singular continuous
component when (1) holds. The preparatory work from the previous section will be crucial.

The first step is to study the number of resonant points on the unit circle at which the Prüfer
radius may be large. Using (1) and an almost-orthogonality lemma from [6], we will show that
their number must be bounded by an explicit constant.

We first recall [6, Lemma 4.4]:

Lemma 4.1. Let e1, . . . , eK be unit vectors in a Hilbert space H with

Q = K sup
k �=l

|〈ek, el〉| < 1.

Then, for any g ∈ H,

K∑
l=1

|〈g, el〉|2 �(1 + Q)‖g‖2.

Below, the Hilbert spaces in question will be given by Hn = Cn with inner product

〈f, g〉Hn
=

n−1∑
j=0

f (j)g(j)(1 + j).

Recall Abel’s formula (summation by parts), which reads

n∑
j=m

(�+a)(j) · b(j) = a(n + 1) · b(n) − a(m) · b(m − 1) −
n∑

j=m

a(j) · (�−b)(j). (11)

Here, a, b are sequences, (�+a)(j) = a(j + 1) − a(j), and (�−b)(j) = b(j) − b(j − 1).
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Lemma 4.2. Assume (1). If g is a real-valued sequence with |(�−g)(j)|�B|�j−2| for a suitable
B > 0, then there is a constant C > 0 such that, for � ∈ (0, 1

2 ), we have

sup
n�1

∣∣∣∣∣∣
n∑

j=1

j−1 ei[j�+g(j)]
∣∣∣∣∣∣ �C log(�−1). (12)

Remark. The proof shows that 1
2 can be replaced by any number q ∈ (0, 1). The constant C will

then also depend on q.

Proof. Consider some � ∈ (0, 1
2 ). Let

a(j) = −
∞∑

k=j

k−1eik� and b(j) = eig(j).

Applying Abel’s formula with ã(k) =∑k−1
m=0 eim� and b̃(k) = 1/k, we see that

|a(j)|� 1

�j
. (13)

Let us now turn to (12).
Clearly,∣∣∣∣∣∣

�−1�∑
j=1

j−1e(i[j�+g(j)])
∣∣∣∣∣∣� log

(
�−1
)

. (14)

On the other hand, for n > �−1 + 1,∣∣∣∣∣∣
n∑

j=�−1�+1

j−1e(i[j�+g(j)])
∣∣∣∣∣∣ =
∣∣∣∣∣∣

n∑
j=�−1�+1

(�+a)(j) · b(j)

∣∣∣∣∣∣ ,
which, by (11), is equal to∣∣∣∣∣∣a(n + 1) · b(n) − a(�−1� + 1) · b(��−1�) −

n∑
j=�−1�+1

a(j) · (�−b)(j)

∣∣∣∣∣∣ .
By (1), (13), and the assumption on g, |(�−g)(j)|�B|�j−2|, this expression is bounded by
log
(
�−1) times a constant only depending on A and B. (Split the sum into dyadic blocks, apply

Cauchy–Schwarz, and then (1).) Combining this bound with (14), the lemma follows. �

Write A(n, �) for A(n, �, 0). We will consider situations where there are �1, . . . , �K such that

|A(n, �l )|�
log n

14
for l = 1, . . . , K (15)

and

n−1/(3K2) � min
k �=l

d(�k, �l ), max d(�k, �l ) <
1

2
. (16)
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Our goal is to bound K from above. This is accomplished by the following lemma.

Lemma 4.3. Assume (1). Then there are constants n0 and Kmax = Kmax(A) such that for n�n0,
there can be no more than Kmax points in [0, 2�) for which (15) and (16) hold.

Proof. Consider �1, . . . , �K for which (15) and (16) hold. Define the following vectors in Hn:

el(j) = E
−1/2
n ei[(j+1)�l+2�j (�l ,0)](1 + j)−1, 1� l�K.

The normalization constant En is chosen so that the vectors have norm one. Obviously, En =
log n + O(1).

Now, for k �= l, we have for n large enough,

|〈ek, el〉| = 1

En

∣∣∣∣∣∣
n−1∑
j=0

(1 + j)−1e(−i[(j+1)�k−2�j (�k,0)]+i[(j+1)�l+2�j (�l ,0)])
∣∣∣∣∣∣

= 1

En

∣∣∣∣∣∣
n∑

j=1

j−1e(i[j (�l−�k)−2�j−1(�k,0)+2�j−1(�l ,0)])
∣∣∣∣∣∣

� D

K2
.

We applied Lemma 4.2 together with (16) in the last step. The constant D depends only on A.
Thus, when K > D, we may apply Lemma 4.1 and obtain for any n�n0 and g ∈ Hn,

K∑
l=1

∣∣〈g, el〉Hn

∣∣2 �2‖g‖2
Hn

. (17)

Let us apply (17) to g = (�0, . . . , �n−1). Due to (1), the right-hand side can be estimated as
follows:

2‖g‖2
Hn

= 2
n−1∑
j=0

|�j |2(j + 1)�2A log n.

On the other hand, by (15),

∣∣〈g, el〉Hn

∣∣ = E
−1/2
n |A(n, �l )|�E

−1/2
n

log n

14
.

Consequently, (17) implies that if K > D and n�n0,

K(log n)2

196En

�2A log n.

This shows that K �D̃, with D̃ roughly being equal to 392A. Therefore, we must have
K � max{D, D̃} whenever (15) and (16) hold for n�n0. �

Let us turn to the proof of the main theorem. Given the results above, we may from now on
follow the arguments of Kiselev in [5] quite closely.
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Proof of Theorem 1. Assume that the singular continuous part of d� is non-trivial. Fix an interval
I ⊂ [0, 2�) of length less than 1

2 such that �sc(I ) = � > 0. Since d�sc is continuous, we can
achieve that �sc(J ) is as small as we want if J is any subinterval of I of sufficiently small length.

In particular, we can find ε0 ∈ (0, 1) that satisfies the following conditions (Kmax and n0 are
the constants from Lemma 4.3):

(i) ε−3
0 � > n0.

(ii) �sc(J ) < �
32K3

max
for all intervals J ⊆ I with |J |�ε

K−2
max

0 .

(iii)
ε

1/2
0

1−ε
1/2
0

� �
32K3

max
.

(iv) The last inequality holds in (18) below.
(v) It is small enough so that we may obtain (19) below.

We say that an interval J ⊂ I belongs to scale m if |J | = εm := εm
0 . Two intervals of scale m

are called separated if the distance between their centers exceeds 3ε
K−2

max
m . An interval J of scale

m is called singular if �sc(J ) > ε
1/2
m .

We first show that there are no more than Kmax separated singular intervals at each scale. Assume
that there are K > Kmax separated singular intervals of scale m: J1, . . . , JK . Let nm = ε−3

m �.
Recall that d�nm

denotes the Bernstein–Szegö approximation of d� at level nm. Using Lemma 2.1,
we see that

�nm
(3Jl)��(Jl) − Cεm > ε

1/2
m − Cεm � 1

2 ε
1/2
m . (18)

By (1) and (4),

d�nm

d�
(�) ∼ R−2

nm
(�, 0).

Thus, there are �l ∈ 3Jl , 1� l�K , such that R−2
nm

(�, 0)�ε
−1/2
m , with a uniform implicit constant.

In other words,

the estimate (15) holds if ε0 is small enough. (19)

Moreover, mink �=l d(�k, �l )�ε
K−2

max
m because the intervals J1, . . . , JK are separated. Finally,

max d(�k, �l ) < 1
2 since |I | < 1

2 . Thus, this yields a contradiction to Lemma 4.3.
Now write Sm for the union of all singular intervals at scale m. This set can be covered by

at most 8Kmax intervals of size ε
K−2

max
m , or else we can find more than Kmax separated singular

intervals at scale m. By property (ii) of ε0, we get

�sc(Sm)�8Kmax × �

32K3
max

= �

4K2
max

for every m�1. Now consider m�K2
max and let m̃ = �mK−2

max��1. If J
(m)
l is a singular interval

at scale m that obeys �sc(J
(m)
l ) > ε

1/2
m̃

, it must a subset of Sm̃ since it can clearly be extended to
a singular interval at scale m̃. Thus, the set

Sm

∖⋃
l<m

Sl
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can be covered by at most 8Kmax intervals of length ε
K−2

max
m and each of these intervals obeys

�sc(·)�ε
1/2
m̃

. Consequently,

�sc

(
Sm

∖⋃
l<m

Sl

)
�8Kmaxε

1/2
m̃

.

Each m̃ corresponds to K2
max values of m. Thus,

�sc

( ∞⋃
m=1

Sm

)
�K2

max × �

4K2
max

+ K2
max ×

∞∑
m̃=1

8Kmaxε
1/2
m̃

= �

4
+

∞∑
m̃=1

8K3
maxε

m̃/2
0

= �

4
+ 8K3

max
ε

1/2
0

1 − ε
1/2
0

� �

2
.

In the last step, we used property (iii) of ε0.
By zero-dimensionality (cf. Proposition 2), �sc|I is supported by the set

D =
{

� ∈ I : lim sup
�→0

�(k − �, k + �)

(2�)1/2
= ∞
}

.

See, for example, [14, Theorem 67]. Thus, for each k ∈ D, there is a sequence �n → 0 such that

�(k − �n, k + �n)

(2�n)1/2
→ ∞.

For n large, define mn by

εmn

2
��n >

εmn+1

2
= ε0εmn

2
.

We obtain

�(k − εmn/2, k + εmn/2)

(ε0εmn)
1/2

� �(k − �n, k + �n)

(2�n)1/2
→ ∞.

It follows that k ∈⋃∞
m=1 Sm and hence

0 < � = �sc(I ) = �sc(D)��sc

( ∞⋃
m=1

Sm

)
� �

2
,

a contradiction. �
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